首页 自考指南 自考资讯 自考院校 自考专业 备战自考 成考指南 成考资讯 成考院校 成考专业 备战成考 报考咨询

模拟试题
模拟试题

栏目导航: 教材大纲历年真题模拟试题笔记串讲技巧心得自考学习视频

2018年自考《运筹学基础》章节习题及答案:第5章

2020-04-22 13:35:51

2018年自考《运筹学基础》章节习题及答案:第5章

第五章作业 线性规划P92

1.线性规划的定义:线性规划是求一组变量的值,在满足一组约束条件下,求得目标函数的最优解,使决策目标达到最优。

2.阐述线性规划的模型结构:(答案在书上68页)

·(1)变量是指实际系统或决策问题中有待确定的未知因素,也是指系统中的可控因素,一般来说,这些因素对系统目标的实现及各项经济指标的完成起决定作用,又称为决策变量。

·(2)目标函数是决策者对决策问题目标的数学描述是一个极值问题,即极大值或极小值。要依据经济规律的客观要求,并具体结合决策问题的实际情况来确定模型的目标函数。

(3)·约束条件是指实现目标的限制因素,反映到模型中就是需要满足的基本条件即约束方程,一般是一组联立方程组或不等式方程组的数学形式。

约束条件具有三种基本类型 :大于或等于;等于;小于或等于。

(4)·线性规划的变量应为正值。

线性规划明确定义:线性规划是求一组变量X1,X2,X3…的值,在满足一组约束条件下,求得目标函数的最优解(最大值或最小值)问题。

3、解:本题是求解最大值的问题,和书上的例题5-3类似。

首先拟定线性规划模型

1)设定变量:

设该电车本周生产甲车x辆,乙车y辆,丙车z辆。

2)建立目标函数,求利润S 的最大值:

maxS=270x+400y+450z

3) 根据约束条件建立约束方程组:

x+2y+3z <=100

2x+2y+3z <=120

4) 变量非负:

x,y,z >=0

建立初始单纯形表:

1) 引入松弛变量

x+2y+3z +k1=100

2x+2y+3z +k2=120

2)目标函数:maxS=270x+400y+450z+0*k1+0*k2

3)变量非负

4)建立初始单纯形表

Cj 270 400 450 0 0 S

基 x y z k1 k2

———————————————————————————

0 k1 1 2 3 1 0 100

0 k2 2 2 3 0 1 120

———————————————————————————

Zj 0 0 0 0 0 0

Cj-Zj 270 400 450 0 0 S

分析上面的初始表,变量系数最大的是z

k1所在行:100/3

k2所在行:120/3=40

所以选定 k1出基

进行第一次迭代,得到如下单纯形表

Cj 270 400 450 0 0 S

基 x y z k1 k2

———————————————————————————

450 z 1/3 2/3 1 1/3 0 100/3

0 k2 1 0 0 -1 1 20

———————————————————————————

Zj 150 300 450 150 0 15000

Cj-Zj 80 100 0 -150 0 S-15000

变量系数最大的是y,所以选择y作为基变量。

z所在行:450/(2/3)=675

k2所在行:20/1=20

所以选定 k2出基

进行第二次迭代,得到如下单纯形表

Cj 270 400 450 0 0 S

基 x y z k1 k2

———————————————————————————

450 z 0 2/3 1 2/3 -1/3 80/3

270 x 1 0 0 -1 1 20

———————————————————————————

Zj 270 300 450 30 120 17400

Cj-Zj 0 100 0 -30 -120 S-17400

量系数最大的是y且是正数,所以选择y作为基变量。

y所在行:(80/3)/(2/3)=40

x所在行:20/0 =+∞

+∞>40,所以z出基 (小于零的和除以0的应该不算)

进行第三次迭代,得到如下单纯形表

Cj 270 400 450 0 0 S

基 x y z k1 k2

———————————————————————————

400 y 0 1 3/2 3/2 -1/2 40

270 x 1 0 0 -1 1 20

———————————————————————————

Zj 270 400 600 330 70 21400

Cj-Zj 0 0 -150 -330 -70 S-21400

因为所有的系数都小于0,所以得到最优解。

S=21400-150z-330k1-70k2

当k1=k2=0时可得x=20,y=40

所以该厂本周的产品组合应该为生产甲车20辆,乙车40辆

4、解:MIN S=1.5X-2.5Y+18.5

则S’=1.5X-2.5Y

约束条件:X-Y-S1+A=1/4

x-Y+S2=1/2

X+Y+S3=1

X+S4 =1

Y+S5 =1

标准型:MIN S’=1.5X-2.5Y+0S1+MA+0S2+0S3+0S4+0S5

建立初始单纯行表:

Cj 2/3 -2/5 0 M 0 0 0 0

基 x y S1 A S2 S3 S4 S5 S

------------------------------------------------------------

M A 1 -1 -1 1 0 0 0 0 1/4

0 S2 1 -1 0 0 1 0 0 0 1/2

0 S3 1 -1 0 0 1 1 0 0 1

0 S4 1 0 0 0 0 0 1 0 1

0 S5 0 1 0 0 0 0 0 1 1

--------------------------------------------------------------

ZJ M -M -M M 0 0 0 0 1/4M

cj-zj 2/3-M -2/5+M M 0 0 0 0 0 s’-1/4m

分析上面的初始表,变量系数最小的是x,所以选择x作为基变量。

s/x 最小的是A

所以选定 A出基

进行第一次迭代,得到如下单纯形表:

Cj 2/3 -2/5 0 M 0 0 0 0

本文标签:

考试倒计时

距离2024年10月26日自学考试还有:

0

距离2024年10月19日成人高考还有:

0
关注公众号
报考咨询